I expect that the topics listed below are ones you have encountered previously so I am going to assume that you are familiar with them at the level required for this course even though we did not discuss them in class. Even so I am pleased to answer during class any questions you might have about any of them. Don't just look at the list and say, "Oh yeah. I have heard of that." Can you tell someone how many neutrons a carbon 14 atom has or give its atomic number if given a periodic table to use?

- photon
 - wave equation
 - energy equation
- atoms
 - electrons
 - protons
 - neutrons
 - electric charge
 - elements (92 in nature)
 - atomic number
 - mass number
 - isotope
- states of matter: (See Figure 5.10)
 - solids: atoms, molecules of a single element, compounds (molecules of two or more elements
 - liquids
 - gases
 - molecular dissociation
 - ionization
 - plasma
 - new ones in astrophysics:
 - degenerate matter (electron)
 - neutron degenerate matter
 - quark matter (maybe)
- energy in atoms
 - mass-energy \((E = mc^2)\)
 - kinetic energy from motion \((KE = \frac{1}{2} mv^2)\)
 - temperature-a measure of average atomic \(KE\) or really velocity
 - energy stored by electrons in different energy levels
 - energy levels
 - regions an electron can occupy around an atom
 - predicted by the Schrödinger equation and quantum mechanics
 - spaced according to energy electron gains to get there
 - spacing is different for each atom (key idea)
 - electron in the lowest state has zero energy
 - electron movement between levels absorbs or emits light
 - this electron action puts lines in a spectrum
 - understanding energy levels is key to spectra in astronomy