How did the λ-DCM Theory Develop?

1915 Albert Einstein publishes theory of general relativity
1917 Willem de Sitter derives an isotropic static cosmology with a cosmological constant from Einstein's GR
1920 Shapley/Curtis The Great Debate
1922 Vesto Slipher publishes findings on the systematic redshifts of spiral nebulae
1922 Alexander Friedmann finds a solution to the Einstein field equations with a general expansion of space
1923 Edwin Hubble measures distances to a few nearby spiral nebulae (galaxies)
1927 Georges Lemaître proposes the cosmic egg for the birth of an expanding universe governed by the Einstein field equations
1929 Edwin Hubble publishes the redshift-distance relation, shows the expansion of the universe
1933 Fritz Zwicky missing mass in the Coma cluster of galaxies & is ignored until the 1970s
1933 Edward Milne proposes the cosmological principle
1933 Georges Lemaître predicts the existence of the cosmic microwave background radiation by cons
1948 George Gamow proposes the steady state theory of the Universe
1948 Fred Hoyle et al. propose the steady state theory of the Universe
1948 Fred Hoyle coins the term "Big Bang" for Lemaître's cosmic egg theory
1965 Penzias & Wilson discover the 2.7 K microwave background radiation
1967 George Gamow calculations show that the hot Big Bang predicts the correct deuterium and lithium abundances
1969 Vera Ruben missing mass in the Milky Way & other galaxies shows most of the mass in them is dark
1980 Vera Ruben proposes inflation as a solution to the horizon and flatness problems
1980 Alan Guth proposes inflation as a solution to the horizon and flatness problems
1981 quantum fluctuations in the early Universe could lead to large scale structure (galaxies, etc.) in an inflationary universe
1982 some propose that the universe is dominated by cold dark matter
by 1987
1990 NASA's COBE first results, early universe is uniform
1992 NASA's COBE more measurements discover the small anisotropy of the CMB, showing the seeds of large-scale structure when Universe was 380,000 years old
1998 2 teams report studies of distant WD supernovae (Type Ia) show the cosmic expansion is accelerating
2000 SDSS The Sloan Digital Sky Survey started data collection
2003 NASA's WMAP shows Lambda-cold dark matter (λ-CDM) is best predictor of current universe
2005 SDSS & others see baryon acoustic oscillation in galaxy distribution
2005-2010 the Virgo Consortium Millennium, Millennium II & Millennium XXL simulations model the λ-CDM universe